Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Nucleic Acids Res ; 50(D1): D27-D38, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-2312875

ABSTRACT

The National Genomics Data Center (NGDC), part of the China National Center for Bioinformation (CNCB), provides a family of database resources to support global research in both academia and industry. With the explosively accumulated multi-omics data at ever-faster rates, CNCB-NGDC is constantly scaling up and updating its core database resources through big data archive, curation, integration and analysis. In the past year, efforts have been made to synthesize the growing data and knowledge, particularly in single-cell omics and precision medicine research, and a series of resources have been newly developed, updated and enhanced. Moreover, CNCB-NGDC has continued to daily update SARS-CoV-2 genome sequences, variants, haplotypes and literature. Particularly, OpenLB, an open library of bioscience, has been established by providing easy and open access to a substantial number of abstract texts from PubMed, bioRxiv and medRxiv. In addition, Database Commons is significantly updated by cataloguing a full list of global databases, and BLAST tools are newly deployed to provide online sequence search services. All these resources along with their services are publicly accessible at https://ngdc.cncb.ac.cn.


Subject(s)
Databases, Factual , Animals , China , Computational Biology , Databases, Genetic , Databases, Pharmaceutical , Dogs , Epigenome , Genome, Human , Genome, Viral , Genomics , Humans , Methylation , Neoplasms/genetics , Neoplasms/pathology , Regeneration , SARS-CoV-2/genetics , Single-Cell Analysis , Software , Synthetic Biology
2.
Clin Lab ; 69(4)2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2291467

ABSTRACT

BACKGROUND: During viral infections such as SARS-CoV-2, epigenetic changes within the promoter region of the immune system genes would possibly occur and have an effect on the immune system response as well as disease outcome. We aimed to evaluate and compare the methylation level of the IFITM1 gene promoter in different stages of COVID-19 disease with a healthy control group. METHODS: In this cross-sectional study, 75 COVID-19 patients (25 mild, 25 severe, and 25 critical in addition to 25 age- and gender-matched healthy volunteers) have been included. DNA was extracted from the peripheral white blood cells using a commercial DNA extraction kit. PCR was performed using two types of primers designed for the methylated and unmethylated forms of the IFITM1 gene promoter. RESULTS: The mean age of the patient and healthy volunteer groups was 52.733 ± 13.780 and 49.120 ± 12.490, respectively. Out of a hundred participants, 52 were male. The results demonstrated that severe (p = 0.03, OR 6.729) and critical (p = 0.001, OR 11.156) patients were much more likely to show methylation of the IFITM1 gene in contrast with mild patients. Moreover, IFITM1 methylation was significantly higher in COVID-19 patients in comparison with the healthy volunteer group (p = 0.004, OR 3.17). Furthermore, IFITM1 methylation in male patients with critical status, (p = 0.01) was significantly higher than in male patients with mild status. In addition, IFITM1 methylation of male (p = 0.03) and female (p = 0.01) critical patients was considerably higher compared to males and females of volunteer group. CONCLUSIONS: Increased methylation of the IFITM1 gene in the severe and critical stage of COVID-19 diseases may indicate the role of SARS-CoV-2 infection in increasing methylation of this antiviral gene. This might be involved in suppressing the immune system, promoting SARS-CoV-2 replication and disease outcome.


Subject(s)
COVID-19 , Humans , Male , Female , COVID-19/genetics , SARS-CoV-2 , Methylation , Cross-Sectional Studies , Promoter Regions, Genetic , DNA Methylation
3.
Genome Res ; 33(3): 299-313, 2023 03.
Article in English | MEDLINE | ID: covidwho-2285021

ABSTRACT

Insights into host-virus interactions during SARS-CoV-2 infection are needed to understand COVID-19 pathogenesis and may help to guide the design of novel antiviral therapeutics. N 6-Methyladenosine modification (m6A), one of the most abundant cellular RNA modifications, regulates key processes in RNA metabolism during stress response. Gene expression profiles observed postinfection with different SARS-CoV-2 variants show changes in the expression of genes related to RNA catabolism, including m6A readers and erasers. We found that infection with SARS-CoV-2 variants causes a loss of m6A in cellular RNAs, whereas m6A is detected abundantly in viral RNA. METTL3, the m6A methyltransferase, shows an unusual cytoplasmic localization postinfection. The B.1.351 variant has a less-pronounced effect on METTL3 localization and loss of m6A than did the B.1 and B.1.1.7 variants. We also observed a loss of m6A upon SARS-CoV-2 infection in air/liquid interface cultures of human airway epithelia, confirming that m6A loss is characteristic of SARS-CoV-2-infected cells. Further, transcripts with m6A modification are preferentially down-regulated postinfection. Inhibition of the export protein XPO1 results in the restoration of METTL3 localization, recovery of m6A on cellular RNA, and increased mRNA expression. Stress granule formation, which is compromised by SARS-CoV-2 infection, is restored by XPO1 inhibition and accompanied by a reduced viral infection in vitro. Together, our study elucidates how SARS-CoV-2 inhibits the stress response and perturbs cellular gene expression in an m6A-dependent manner.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Methylation , RNA , RNA, Viral/genetics , Methyltransferases/genetics
4.
J Phys Chem Lett ; 14(13): 3199-3207, 2023 Apr 06.
Article in English | MEDLINE | ID: covidwho-2252233

ABSTRACT

Nonstructural accessory proteins in viruses play a key role in hijacking the basic cellular mechanisms, which is essential to promote the virus survival and evasion of the immune system. The immonuglobulin-like open reading frame 8 (ORF8) protein expressed by SARS-CoV-2 accumulates in the nucleus and may influence the regulation of the gene expression in infected cells. In this contribution, by using microsecond time-scale all-atom molecular dynamics simulations, we unravel the structural bases behind the epigenetic action of ORF8. In particular, we highlight how the protein is able to form stable aggregates with DNA through a histone tail-like motif, and how this interaction is influenced by post-translational modifications, such as acetylation and methylation, which are known epigenetic markers in histones. Our work not only clarifies the molecular mechanisms behind the perturbation of the epigenetic regulation caused by the viral infection but also offers an unusual perspective which may foster the development of original antivirals.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Epigenesis, Genetic , COVID-19/genetics , Histones/metabolism , Methylation
5.
Emerg Microbes Infect ; 12(1): 2178238, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2236789

ABSTRACT

5-Methylcytosine (m5C) is a widespread post-transcriptional RNA modification and is reported to be involved in manifold cellular responses and biological processes through regulating RNA metabolism. However, its regulatory role in antiviral innate immunity has not yet been elucidated. Here, we report that NSUN2, a typical m5C methyltransferase, negatively regulates type I interferon responses during various viral infections, including SARS-CoV-2. NSUN2 specifically mediates m5C methylation of IRF3 mRNA and accelerates its degradation, resulting in low levels of IRF3 and downstream IFN-ß production. Knockout or knockdown of NSUN2 enhanced type I interferon and downstream ISGs during various viral infection in vitro. And in vivo, the antiviral innate response is more dramatically enhanced in Nsun2+/- mice than in Nsun2+/+ mice. The highly m5C methylated cytosines in IRF3 mRNA were identified, and their mutation enhanced cellular IRF3 mRNA levels. Moreover, infection with Sendai virus (SeV), vesicular stomatitis virus (VSV), herpes simplex virus 1 (HSV-1), or Zika virus (ZIKV) resulted in a reduction of endogenous NSUN2 levels. Especially, SARS-CoV-2 infection (WT strain and BA.1 omicron variant) also decreased endogenous levels of NSUN2 in COVID-19 patients and K18-hACE2 KI mice, further increasing type I interferon and downstream ISGs. Together, our findings reveal that NSUN2 serves as a negative regulator of interferon response by accelerating the fast turnover of IRF3 mRNA, while endogenous NSUN2 levels decrease during SARS-CoV-2 and various viral infections to boost antiviral responses for effective elimination of viruses.


Subject(s)
COVID-19 , Interferon Type I , Virus Diseases , Zika Virus Infection , Zika Virus , Animals , Mice , Interferon Type I/genetics , Interferon Type I/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Methylation , Zika Virus/metabolism , Mice, Knockout , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Antiviral Agents , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism
6.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: covidwho-2212717

ABSTRACT

Protein arginine methylation is an important posttranslational modification (PTM) associated with protein functional diversity and pathological conditions including cancer. Identification of methylation binding sites facilitates a better understanding of the molecular function of proteins. Recent developments in the field of deep neural networks have led to a proliferation of deep learning-based methylation identification studies because of their fast and accurate prediction. In this paper, we propose DeepGpgs, an advanced deep learning model incorporating Gaussian prior and gated attention mechanism. We introduce a residual network channel to extract the evolutionary information of proteins. Then we combine the adaptive embedding with bidirectional long short-term memory networks to form a context-shared encoder layer. A gated multi-head attention mechanism is followed to obtain the global information about the sequence. A Gaussian prior is injected into the sequence to assist in predicting PTMs. We also propose a weighted joint loss function to alleviate the false negative problem. We empirically show that DeepGpgs improves Matthews correlation coefficient by 6.3% on the arginine methylation independent test set compared with the existing state-of-the-art methylation site prediction methods. Furthermore, DeepGpgs has good robustness in phosphorylation site prediction of SARS-CoV-2, which indicates that DeepGpgs has good transferability and the potential to be extended to other modification sites prediction. The open-source code and data of the DeepGpgs can be obtained from https://github.com/saizhou1/DeepGpgs.


Subject(s)
COVID-19 , Deep Learning , Humans , Methylation , Arginine/metabolism , SARS-CoV-2/metabolism , Proteins/metabolism
7.
Molecules ; 28(2)2023 Jan 12.
Article in English | MEDLINE | ID: covidwho-2200546

ABSTRACT

SARS-CoV-2 nsp14 guanine-N7-methyltransferase plays an important role in the viral RNA translation process by catalyzing the transfer of a methyl group from S-adenosyl-methionine (SAM) to viral mRNA cap. We report a structure-guided design and synthesis of 3-(adenosylthio)benzoic acid derivatives as nsp14 methyltransferase inhibitors resulting in compound 5p with subnanomolar inhibitory activity and improved cell membrane permeability in comparison with the parent inhibitor. Compound 5p acts as a bisubstrate inhibitor targeting both SAM and mRNA-binding pockets of nsp14. While the selectivity of 3-(adenosylthio)benzoic acid derivatives against human glycine N-methyltransferase was not improved, the discovery of phenyl-substituted analogs 5p,t may contribute to further development of SARS-CoV-2 nsp14 bisubstrate inhibitors.


Subject(s)
Antiviral Agents , Methyltransferases , SARS-CoV-2 , Methylation , Methyltransferases/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Viral/genetics , S-Adenosylmethionine/chemistry , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/metabolism , Antiviral Agents/pharmacology
8.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: covidwho-2001208

ABSTRACT

Recently, N6-methylation (m6A) has recently become a hot topic due to its key role in disease pathogenesis. Identifying disease-related m6A sites aids in the understanding of the molecular mechanisms and biosynthetic pathways underlying m6A-mediated diseases. Existing methods treat it primarily as a binary classification issue, focusing solely on whether an m6A-disease association exists or not. Although they achieved good results, they all shared one common flaw: they ignored the post-transcriptional regulation events during disease pathogenesis, which makes biological interpretation unsatisfactory. Thus, accurate and explainable computational models are required to unveil the post-transcriptional regulation mechanisms of disease pathogenesis mediated by m6A modification, rather than simply inferring whether the m6A sites cause disease or not. Emerging laboratory experiments have revealed the interactions between m6A and other post-transcriptional regulation events, such as circular RNA (circRNA) targeting, microRNA (miRNA) targeting, RNA-binding protein binding and alternative splicing events, etc., present a diverse landscape during tumorigenesis. Based on these findings, we proposed a low-rank tensor completion-based method to infer disease-related m6A sites from a biological standpoint, which can further aid in specifying the post-transcriptional machinery of disease pathogenesis. It is so exciting that our biological analysis results show that Coronavirus disease 2019 may play a role in an m6A- and miRNA-dependent manner in inducing non-small cell lung cancer.


Subject(s)
COVID-19 , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Adenosine/metabolism , Alternative Splicing , COVID-19/genetics , Humans , Methylation , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular , RNA-Binding Proteins/metabolism
9.
Front Public Health ; 10: 914193, 2022.
Article in English | MEDLINE | ID: covidwho-1875442

ABSTRACT

Background: RNA N6-methyladenosine (m6A) regulators may be necessary for diverse viral infectious diseases, and serve pivotal roles in various physiological functions. However, the potential roles of m6A regulators in coronavirus disease 2019 (COVID-19) remain unclear. Methods: The gene expression profile of patients with or without COVID-19 was acquired from Gene Expression Omnibus (GEO) database, and bioinformatics analysis of differentially expressed genes was conducted. Random forest modal and nomogram were established to predict the occurrence of COVID-19. Afterward, the consensus clustering method was utilized to establish two different m6A subtypes, and associations between subtypes and immunity were explored. Results: Based on the transcriptional data from GSE157103, we observed that the m6A modification level was markedly enriched in the COVID-19 patients than those in the non-COVID-19 patients. And 18 essential m6A regulators were identified with differential analysis between patients with or without COVID-19. The random forest model was utilized to determine 8 optimal m6A regulators for predicting the emergence of COVID-19. We then established a nomogram based on these regulators, and its predictive reliability was validated by decision curve analysis. The consensus clustering algorithm was conducted to categorize COVID-19 patients into two m6A subtypes from the identified m6A regulators. The patients in cluster A were correlated with activated T-cell functions and may have a superior prognosis. Conclusions: Collectively, m6A regulators may be involved in the prevalence of COVID-19 patients. Our exploration of m6A subtypes may benefit the development of subsequent treatment modalities for COVID-19.


Subject(s)
COVID-19 , Adenosine/genetics , Adenosine/metabolism , COVID-19/epidemiology , Humans , Methylation , RNA/genetics , RNA/metabolism , Reproducibility of Results
10.
J Immunol Res ; 2022: 1433323, 2022.
Article in English | MEDLINE | ID: covidwho-1697599

ABSTRACT

We performed a database mining on 102 transcriptomic datasets for the expressions of 29 m6A-RNA methylation (epitranscriptomic) regulators (m6A-RMRs) in 41 diseases and cancers and made significant findings: (1) a few m6A-RMRs were upregulated; and most m6A-RMRs were downregulated in sepsis, acute respiratory distress syndrome, shock, and trauma; (2) half of 29 m6A-RMRs were downregulated in atherosclerosis; (3) inflammatory bowel disease and rheumatoid arthritis modulated m6A-RMRs more than lupus and psoriasis; (4) some organ failures shared eight upregulated m6A-RMRs; end-stage renal failure (ESRF) downregulated 85% of m6A-RMRs; (5) Middle-East respiratory syndrome coronavirus infections modulated m6A-RMRs the most among viral infections; (6) proinflammatory oxPAPC modulated m6A-RMRs more than DAMP stimulation including LPS and oxLDL; (7) upregulated m6A-RMRs were more than downregulated m6A-RMRs in cancer types; five types of cancers upregulated ≥10 m6A-RMRs; (8) proinflammatory M1 macrophages upregulated seven m6A-RMRs; (9) 86% of m6A-RMRs were differentially expressed in the six clusters of CD4+Foxp3+ immunosuppressive Treg, and 8 out of 12 Treg signatures regulated m6A-RMRs; (10) immune checkpoint receptors TIM3, TIGIT, PD-L2, and CTLA4 modulated m6A-RMRs, and inhibition of CD40 upregulated m6A-RMRs; (11) cytokines and interferons modulated m6A-RMRs; (12) NF-κB and JAK/STAT pathways upregulated more than downregulated m6A-RMRs whereas TP53, PTEN, and APC did the opposite; (13) methionine-homocysteine-methyl cycle enzyme Mthfd1 downregulated more than upregulated m6A-RMRs; (14) m6A writer RBM15 and one m6A eraser FTO, H3K4 methyltransferase MLL1, and DNA methyltransferase, DNMT1, regulated m6A-RMRs; and (15) 40 out of 165 ROS regulators were modulated by m6A eraser FTO and two m6A writers METTL3 and WTAP. Our findings shed new light on the functions of upregulated m6A-RMRs in 41 diseases and cancers, nine cellular and molecular mechanisms, novel therapeutic targets for inflammatory disorders, metabolic cardiovascular diseases, autoimmune diseases, organ failures, and cancers.


Subject(s)
Atherosclerosis/genetics , Epigenesis, Genetic , Neoplasms/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Autoimmune Diseases/genetics , Datasets as Topic , Gene Expression Profiling , Humans , Inflammation/genetics , Metabolic Diseases/genetics , Methylation
11.
Nature ; 602(7896): 343-348, 2022 02.
Article in English | MEDLINE | ID: covidwho-1671588

ABSTRACT

Carbapenems are antibiotics of last resort in the clinic. Owing to their potency and broad-spectrum activity, they are an important part of the antibiotic arsenal. The vital role of carbapenems is exemplified by the approval acquired by Merck from the US Food and Drug Administration (FDA) for the use of an imipenem combination therapy to treat the increased levels of hospital-acquired and ventilator-associated bacterial pneumonia that have occurred during the COVID-19 pandemic1. The C6 hydroxyethyl side chain distinguishes the clinically used carbapenems from the other classes of ß-lactam antibiotics and is responsible for their low susceptibility to inactivation by occluding water from the ß-lactamase active site2. The construction of the C6 hydroxyethyl side chain is mediated by cobalamin- or B12-dependent radical S-adenosylmethionine (SAM) enzymes3. These radical SAM methylases (RSMTs) assemble the alkyl backbone by sequential methylation reactions, and thereby underlie the therapeutic usefulness of clinically used carbapenems. Here we present X-ray crystal structures of TokK, a B12-dependent RSMT that catalyses three-sequential methylations during the biosynthesis of asparenomycin A. These structures, which contain the two metallocofactors of the enzyme and were determined in the presence and absence of a carbapenam substrate, provide a visualization of a B12-dependent RSMT that uses the radical mechanism that is shared by most of these enzymes. The structures provide insight into the stereochemistry of initial C6 methylation and suggest that substrate positioning governs the rate of each methylation event.


Subject(s)
Carbapenems/biosynthesis , Methyltransferases/chemistry , Methyltransferases/metabolism , S-Adenosylmethionine/metabolism , Streptomyces/enzymology , Thienamycins/biosynthesis , Vitamin B 12/metabolism , Binding Sites , Biocatalysis , Coenzymes/metabolism , Crystallography, X-Ray , Kinetics , Methylation , Models, Molecular , Protein Binding , Protein Domains , Streptomyces/metabolism , beta-Lactamase Inhibitors/metabolism , beta-Lactamases/chemistry , beta-Lactamases/metabolism
12.
Epigenomics ; 14(3): 153-162, 2022 02.
Article in English | MEDLINE | ID: covidwho-1622527

ABSTRACT

Smoking could predispose individuals to a more severe COVID-19 by upregulating a particular gene known as mdig, which is mediated through a number of well-known histone modifications. Smoking might regulate the transcription-activating H3K4me3 mark, along with the transcription-repressing H3K9me3 and H3K27me3 marks, in a way to favor SARS-CoV-2 entry by enhancing the expression of ACE2, NRP1 and NRP2, AT1R, CTSD and CTSL, PGE2 receptors 2-4, SLC6A20 and IL-6, all of which interact either directly or indirectly with important receptors, facilitating viral entry in COVID-19.


Lay abstract The role of smoking in development of several respiratory diseases has been clearly established. A significant proportion of these deleterious effects is mediated through epigenetic mechanisms, particularly histone modifications. Recent evidence indicates that smoking induces the expression of a mediator known as mdig, which in turn alters the transcription of several key proteins that have been implicated in development of COVID-19.


Subject(s)
COVID-19/genetics , Dioxygenases/genetics , Epigenesis, Genetic , Histone Demethylases/genetics , Histones/genetics , Nuclear Proteins/genetics , Protein Processing, Post-Translational , Smoking/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/diagnosis , COVID-19/metabolism , COVID-19/virology , Cathepsin D/genetics , Cathepsin D/metabolism , Cathepsin L/genetics , Cathepsin L/metabolism , Dioxygenases/metabolism , Histone Demethylases/metabolism , Histones/metabolism , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Methylation , Neuropilin-1/genetics , Neuropilin-1/metabolism , Neuropilin-2/genetics , Neuropilin-2/metabolism , Nuclear Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Receptors, Prostaglandin E/genetics , Receptors, Prostaglandin E/metabolism , Risk Factors , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , Smoking/metabolism , Smoking/pathology , Virus Internalization
13.
Nucleic Acids Res ; 50(2): 635-650, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1621653

ABSTRACT

Coronaviral methyltransferases (MTases), nsp10/16 and nsp14, catalyze the last two steps of viral RNA-cap creation that takes place in cytoplasm. This cap is essential for the stability of viral RNA and, most importantly, for the evasion of innate immune system. Non-capped RNA is recognized by innate immunity which leads to its degradation and the activation of antiviral immunity. As a result, both coronaviral MTases are in the center of scientific scrutiny. Recently, X-ray and cryo-EM structures of both enzymes were solved even in complex with other parts of the viral replication complex. High-throughput screening as well as structure-guided inhibitor design have led to the discovery of their potent inhibitors. Here, we critically summarize the tremendous advancement of the coronaviral MTase field since the beginning of COVID pandemic.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus/drug effects , Coronavirus/enzymology , Methyltransferases/antagonists & inhibitors , Methyltransferases/chemistry , Methyltransferases/metabolism , Amino Acid Sequence , Amino Acids/chemistry , Binding Sites , Coronavirus/genetics , Drug Discovery , Humans , Methylation , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Structure-Activity Relationship
14.
Dis Markers ; 2021: 7686374, 2021.
Article in English | MEDLINE | ID: covidwho-1595046

ABSTRACT

OBJECTIVE: S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are indicators of global transmethylation and may play an important role as markers of severity of COVID-19. METHODS: The levels of plasma SAM and SAH were determined in patients admitted with COVID-19 (n = 56, mean age = 61). Lung injury was identified by computed tomography (CT) in accordance with the CT0-4 classification. RESULTS: SAM was found to be a potential marker of lung damage risk in COVID-19 patients (SAM > 80 nM; CT3,4 vs. CT 0-2: relative ratio (RR) was 3.0; p = 0.0029). SAM/SAH > 6.0 was also found to be a marker of lung injury (CT2-4 vs. CT0,1: RR = 3.47, p = 0.0004). There was a negative association between SAM and glutathione level (ρ = -0.343, p = 0.011). Interleukin-6 (IL-6) levels were associated with SAM (ρ = 0.44, p = 0.01) and SAH (ρ = 0.534, p = 0.001) levels. CONCLUSIONS: A high SAM level and high methylation index are associated with the risk of lung injury in patients with COVID-19. The association of SAM with IL-6 and glutathione indicates an important role of transmethylation in the development of cytokine imbalance and oxidative stress in patients with COVID-19.


Subject(s)
COVID-19/complications , Lung Injury/blood , S-Adenosylhomocysteine/blood , S-Adenosylmethionine/blood , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Atherosclerosis/epidemiology , Biomarkers , COVID-19/epidemiology , Comorbidity , Diabetes Mellitus/epidemiology , Female , Glutathione/blood , Humans , Hypertension/epidemiology , Interleukin-6/blood , Lung Injury/diagnostic imaging , Lung Injury/etiology , Male , Methylation , Middle Aged , Military Personnel , Risk , Tomography, X-Ray Computed , Young Adult
15.
STAR Protoc ; 3(1): 101067, 2022 03 18.
Article in English | MEDLINE | ID: covidwho-1595326

ABSTRACT

N 6 -methylation of adenosine (m6A) is the most abundant internal mRNA modification and is an important post-transcriptional regulator of gene expression. Here, we describe a protocol for methylated RNA immunoprecipitation sequencing (MeRIP-Seq) to detect and quantify m6A modifications in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. The protocol is optimized for low viral RNA levels and is readily adaptable for other applications. For complete details on the use and execution of this protocol, please refer to Li et al. (2021).


Subject(s)
Adenosine/analogs & derivatives , Immunoprecipitation/methods , Sequence Analysis, RNA/methods , Adenosine/analysis , Adenosine/genetics , Animals , COVID-19/genetics , Caco-2 Cells , Chlorocebus aethiops , Gene Expression/genetics , Gene Expression Regulation/genetics , Genetic Techniques , HEK293 Cells , Humans , Methylation , RNA/chemistry , RNA/genetics , RNA Processing, Post-Transcriptional , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Vero Cells
16.
Int J Mol Sci ; 23(1)2021 Dec 28.
Article in English | MEDLINE | ID: covidwho-1580696

ABSTRACT

The inhibition of key enzymes that may contain the viral replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have assumed central importance in drug discovery projects. Nonstructural proteins (nsps) are essential for RNA capping and coronavirus replication since it protects the virus from host innate immune restriction. In particular, nonstructural protein 16 (nsp16) in complex with nsp10 is a Cap-0 binding enzyme. The heterodimer formed by nsp16-nsp10 methylates the 5'-end of virally encoded mRNAs to mimic cellular mRNAs and thus it is one of the enzymes that is a potential target for antiviral therapy. In this study, we have evaluated the mechanism of the 2'-O methylation of the viral mRNA cap using hybrid quantum mechanics/molecular mechanics (QM/MM) approach. It was found that the calculated free energy barriers obtained at M062X/6-31+G(d,p) is in agreement with experimental observations. Overall, we provide a detailed molecular analysis of the catalytic mechanism involving the 2'-O methylation of the viral mRNA cap and, as expected, the results demonstrate that the TS stabilization is critical for the catalysis.


Subject(s)
Methyltransferases/metabolism , RNA Caps/chemistry , RNA Caps/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Biocatalysis , Biomechanical Phenomena , Methylation , Methyltransferases/chemistry , Molecular Dynamics Simulation , Quantum Theory , RNA Processing, Post-Transcriptional , Viral Nonstructural Proteins/chemistry , Viral Regulatory and Accessory Proteins/chemistry
17.
Biochem J ; 478(14): 2789-2791, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1526112

ABSTRACT

Post-translational modifications (PTMs) on histone proteins are known as epigenetic marks that demarcate the status of chromatin. These modifications are 'read' by specific reader proteins, which in turn recruit additional factors to modulate chromatin accessibility and the activity of the underlying DNA. Accumulating evidence suggests that these modifications are not restricted solely to histones, many non-histone proteins may function in a similar way through mimicking the histones. In this commentary, we briefly discuss a systematic study of the discovery of histone H3 N-terminal mimicry proteins (H3TMs), and their implications in chromatin regulation and drug discoveries.


Subject(s)
Chromatin/metabolism , DNA/metabolism , Histones/metabolism , Protein Processing, Post-Translational , Animals , Chromatin/genetics , Chromatin Assembly and Disassembly , DNA/genetics , Humans , Lysine/metabolism , Methylation , Models, Biological
18.
Viruses ; 13(11)2021 10 20.
Article in English | MEDLINE | ID: covidwho-1481015

ABSTRACT

The causative agent of COVID-19 pandemic, SARS-CoV-2, has a 29,903 bases positive-sense single-stranded RNA genome. RNAs exhibit about 150 modified bases that are essential for proper function. Among internal modified bases, the N6-methyladenosine, or m6A, is the most frequent, and is implicated in SARS-CoV-2 immune response evasion. Although the SARS-CoV-2 genome is RNA, almost all genomes sequenced thus far are, in fact, reverse transcribed complementary DNAs. This process reduces the true complexity of these viral genomes because the incorporation of dNTPs hides RNA base modifications. Here, we present an initial exploration of Nanopore direct RNA sequencing to assess the m6A residues in the SARS-CoV-2 sequences of ORF3a, E, M, ORF6, ORF7a, ORF7b, ORF8, N, ORF10 and the 3'-untranslated region. We identified fifteen m6A methylated positions, of which, six are in ORF N. Additionally, because m6A is associated with the DRACH motif, we compared its distribution in major SARS-CoV-2 variants. Although DRACH is highly conserved among variants, we show that variants Beta and Eta have a fourth position C > U change in DRACH at 28,884b that could affect methylation. This is the first report of direct RNA sequencing of a Brazilian SARS-CoV-2 sample coupled with the identification of modified bases.


Subject(s)
Adenosine/analogs & derivatives , COVID-19/virology , Immune Evasion/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , 3' Untranslated Regions , Adenosine/metabolism , Animals , Chlorocebus aethiops , Genome, Viral , Humans , Methylation , Nanopore Sequencing/methods , Open Reading Frames , Sequence Analysis, RNA/methods , Vero Cells
19.
Int J Mol Sci ; 22(20)2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-1480792

ABSTRACT

The infection of mammalian cells by enveloped viruses is triggered by the interaction of viral envelope glycoproteins with the glycosaminoglycan, heparan sulfate. By mimicking this carbohydrate, some anionic polysaccharides can block this interaction and inhibit viral entry and infection. As heparan sulfate carries both carboxyl and sulfate groups, this work focused on the derivatization of a (1→3)(1→6)-ß-D-glucan, botryosphaeran, with these negatively-charged groups in an attempt to improve its antiviral activity. Carboxyl and sulfonate groups were introduced by carboxymethylation and sulfonylation reactions, respectively. Three derivatives with the same degree of carboxymethylation (0.9) and different degrees of sulfonation (0.1; 0.2; 0.4) were obtained. All derivatives were chemically characterized and evaluated for their antiviral activity against herpes (HSV-1, strains KOS and AR) and dengue (DENV-2) viruses. Carboxymethylated botryosphaeran did not inhibit the viruses, while all sulfonated-carboxymethylated derivatives were able to inhibit HSV-1. DENV-2 was inhibited only by one of these derivatives with an intermediate degree of sulfonation (0.2), demonstrating that the dengue virus is more resistant to anionic ß-D-glucans than the Herpes simplex virus. By comparison with a previous study on the antiviral activity of sulfonated botryosphaerans, we conclude that the presence of carboxymethyl groups might have a detrimental effect on antiviral activity.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Herpesviridae/drug effects , Sulfonic Acids/chemistry , beta-Glucans/chemistry , Animals , Antiviral Agents/chemistry , Cell Survival/drug effects , Chlorocebus aethiops , Dengue Virus/physiology , Glucans/chemistry , Glucans/pharmacology , Herpesviridae/physiology , Methylation , Vero Cells , Virus Internalization/drug effects , beta-Glucans/pharmacology
20.
Int J Mol Sci ; 22(19)2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1463708

ABSTRACT

Social behavioral changes, including social isolation or loneliness, increase the risk for stress-related disorders, such as major depressive disorder, posttraumatic stress disorder (PTSD), and suicide, which share a strong neuroinflammatory etiopathogenetic component. The peroxisome-proliferator activated receptor (PPAR)-α, a newly discovered target involved in emotional behavior regulation, is a ligand-activated nuclear receptor and a transcription factor that, following stimulation by endogenous or synthetic ligands, may induce neuroprotective effects by modulating neuroinflammation, and improve anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. How stress affects epigenetic mechanisms with downstream effects on inflammation and emotional behavior remains poorly understood. We studied the effects of 4-week social isolation, using a mouse model of PTSD/suicide-like behavior, on hippocampal PPAR-α epigenetic modification. Decreased PPAR-α expression in the hippocampus of socially isolated mice was associated with increased levels of methylated cytosines of PPAR-α gene CpG-rich fragments and deficient neurosteroid biosynthesis. This effect was associated with increased histone deacetylases (HDAC)1, methyl-cytosine binding protein (MeCP)2 and decreased ten-eleven translocator (TET)2 expression, which favor hypermethylation. These alterations were associated with increased TLR-4 and pro-inflammatory markers (e.g., TNF-α,), mediated by NF-κB signaling in the hippocampus of aggressive mice. This study contributes the first evidence of stress-induced brain PPAR-α epigenetic regulation. Social isolation stress may constitute a risk factor for inflammatory-based psychiatric disorders associated with neurosteroid deficits, and targeting epigenetic marks linked to PPAR-α downregulation may offer a valid therapeutic approach.


Subject(s)
Aggression , Hippocampus/metabolism , Inflammation/etiology , PPAR alpha/genetics , Social Isolation , Stress, Psychological , Aggression/psychology , Animals , Behavior, Animal , Chromatin Assembly and Disassembly , CpG Islands , Disease Models, Animal , Disease Susceptibility , Epigenesis, Genetic , Gene Expression , Inflammation/metabolism , Inflammation Mediators/metabolism , Male , Methylation , Mice , PPAR alpha/metabolism , Promoter Regions, Genetic , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL